IBS Institute for Basic Science



Lab Name: Neurovascular Coupling Laboratory



Our laboratory aims to understand the basic mechanism of physiological interaction among neurons, glias and vascular system and provide better insights for perfusion related neuroimaging techniques. Our particular research interests include: 1) Study the effect of chronic stress on neurovascular coupling at functional and structural level, 2) Study  the effect of pathologically heightened neuronal excitation and synchronization on neurovascular coupling at functional and structural level and develop cell-therapy for epilepsy, 3) Study neurovascular coupling mechanism through neurovascular coupling modulators, such as nitric oxide, carbon monoxide, & glucose, and 4) Develop novel techniques to restore neurovascular coupling dysfunction


Selected Recent Publication

1. Lee S, Kang B, Shin M, Min J, Heo C, Lee Y, Baeg E, Suh M*, "Chronic stress decreases cerebrovascular responses during rat hindlimb electrical stimulation", Frontiers in Neuroscience 23;9:462, 2015.


2. Im S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, Kim HM, Park HJ, Kim DH, Lee HG, Yoon H, Kim JY, Shin JH, Kim LK, Doh J, Kim H, Bothwell ALM, Lee SK, Suh M, Choi JM*, "A novel CNS-permeable peptide, dNP2 enables cytoplasmic domain of CTLA-4 protein to regulate autoimmune encephalomyelitis", Nature Communication 15;6:8244, 2015.


3. Jo A, Heo C, Schwartz TH, Suh M*, "Nanoscale intracortical iron injection induces chronic epilepsy in rodent", Journal of Neuroscience Research 92(3):389-397, 2014.


4. Heo C, Lee SY, Jo A, Jung S, Suh M*, Lee YH*, "Flexible, transparent, and non-cytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement", ACS Nano 25;7(6):4869-4878, 2013.


5. Jo A, Do H, Jhon GJ, Suh M*, Lee Y*, "Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain", Anal Chem 1;83(21):8314-8319, 2011.